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Abstract
Although far from routine, simulating the folding of specific short protein chains on the
computer, at a detailed atomic level, is starting to become a reality. This remarkable progress,
which has been made over the last decade or so, allows a fundamental aspect of the protein
folding process to be addressed, namely its statistical nature. In order to make quantitative
comparisons with experimental kinetic data a complete ensemble view of folding must be
achieved, with key observables averaged over the large number of microscopically different
folding trajectories available to a protein chain. Here we review recent advances in atomic-level
protein folding simulations and the new insight provided by them into the protein folding
process. An important element in understanding ensemble folding kinetics are methods for
analyzing many separate folding trajectories, and we discuss techniques developed to condense
the large amount of information contained in an ensemble of trajectories into a manageable
picture of the folding process.

(Some figures in this article are in colour only in the electronic version)
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1. Introduction

Akin to a phase transition rather than a classical chemical
reaction, protein folding is the process that transforms a
polypeptide chain from an unfolded, high-entropy state into its
unique, native structure. The stability of the compact native
state is maintained by many weak noncovalent interactions,
dominated by hydrogen bonding and the hydrophobic effect.
Hence, the formation of the native structure involves a
competition between the loss of conformational entropy and
the formation of favorable noncovalent interactions. This
energy–entropy compensation which occurs during folding is
large but remarkably balanced such that ultimately the native
states of proteins are only marginally stable (typically 5–20
kBT at room temperature where kB is Boltzmann’s constant
and T the temperature in kelvin) [1, 2]. A large number
of microscopically separate folding trajectories are possible
in the transition from the unfolded to the native state, and
understanding folding in atomic detail requires an ensemble
approach.
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Protein folding is of great biological and medical
importance and a tremendous amount of effort has been
put into understanding this process, both through theoretical
approaches and in vitro experiments [3–7]. In the past, the
focus on folding was primarily motivated by the observation
that the biological function of a protein is determined not
by its amino acid sequence directly but rather by the three-
dimensional structure of the native state. Additional interest
in folding has been spurred by two more recent observations,
which in particular emphasize the importance of understanding
folding as a dynamic process. First, it has become clear that
a significant portion of proteins are partially, or even wholly,
unfolded on their own and yet biologically active in some
cases [8]. Folding may then occur as they bind to their target
molecules, which establishes a direct link between the folding
process and the biological function of the protein. Second,
it has been found that ‘errors’ in the folding process, so-
called misfolding, can have severe consequences for the host
organism [9]. Parkinson’s and type II diabetes are examples
of diseases which have been linked to the misfolding and
subsequent aggregation of protein chains. These types of
protein conformational diseases are often particularly severe
and debilitating. Understanding, in atomic detail, the folding
and misfolding processes may be useful as a starting point for
devising therapeutic strategies for this class of diseases [9].

Because of the potential for microscopic insight into
the mechanism of folding, simulating protein folding on the
computer at atomic detail has been a long-standing challenge
in biology. Until very recently, performing such folding
simulations was computationally prohibitively demanding.
In the last few years, however, it has become feasible to
obtain representative conformational sampling in atomic-level
simulations for some small proteins and peptides, at least when
these models are combined with minimalistic potential energy
functions for describing the physical interactions that drive
folding. This does not mean that the protein folding problem
is solved, however. Rather, it means that the focus should be
on developing potential energy functions that are simple yet
physically sound, i.e. agree with available experimental data.
The ability to make detailed, quantitative comparisons between
simulation and experiment for specific proteins at the atomic
level is an exciting recent development. Vital for the goal of
‘calibrating’ protein models to experimental thermodynamic
and kinetic data are small autonomously folding proteins
and peptides with different types of secondary and tertiary
structure. Several such small folding units have been
discovered in recent years. Examples include the B domain of
protein A and the headpiece subdomain of the F-actin binding
protein Villin, which both have been intensively studied by
simulation and experiment. Moreover, re-engineered versions
of small proteins, with one or several amino acid mutations,
have been developed to achieve extremely high folding rates,
even approaching the ‘speed limit’ for folding [10], in
order to close to gap between experiment and the limits
of simulations. This is particularly important for detailed
molecular dynamics models with an explicit representation
of the solvent atoms (water), which are computationally
extremely demanding. However, due to large-scale distributed

computing projects such as the ‘folding@home’ project [11],
even such explicit-water simulations have recently reached
single-trajectory timescales which are approaching, or even
exceeding, the folding times of small and extremely fast-
folding helical proteins [12]. In particular, this means that
a comparison between molecular dynamics explicit-water
models and simpler minimalistic all-atom models can be made
in some cases.

The emerging ability to perform such large-scale folding
simulations creates a need to develop tools to analyze and
organize the data. To this end, various graph-theoretical tools
and clustering procedures have been developed by several
groups. Such tools can play important roles for folding
simulation studies. Their main goal is to condense the
information contained in many folding events into a coherent
coarse-grained description of the folding process, but they have
also been used in more direct ways, for example, by helping
to identify particular states, such as folding intermediates and
transition-state ensembles.

1.1. Why is explicit-chain simulation of protein folding
necessary?

Before turning to the specific progress made in recent
simulation studies of protein folding, it is useful to briefly
consider the advantages and difficulties of studying the protein
folding process using explicit-chain models. In order to trust
the dynamical behavior of a chain model it is, of course,
crucial that simulations are able to reproduce key aspects of
the available experimental data for specific proteins. For
some common types of experimental data this has proven
to be challenging (although not impossible). It may in this
situation be tempting to turn to other types of simple theoretical
models which lack an explicit representation of the protein
chain. Several such theoretical constructs [13–15], where the
free-energy function is postulated and expressed in various
ways using information from the native structure, have had
limited success in reproducing some experimental data on
folding, in particular the folding rate kf. These results hinge
mainly on an empirical observation that was made in 1998
by Plaxco et al, namely that for two-state proteins (most
small single-domain proteins) the logarithm of the folding
rate, ln kf, correlates significantly with the so-called relative
contact order, a simple topological parameter derived from the
coordinates of the native structure which measures the average
sequence separation between contacting residues relative to
protein length [16]. However, as more data became available
and all rather than only two-state proteins were included,
other properties such as absolute contact order (which is
closely correlated itself with protein length) showed much
better predictive power while relative contact order exhibited
an almost random correlation [17–20]. Despite the success
of these simple theoretical constructs in reproducing certain
experimental data, it has been argued that an explicit treatment
of the protein chain is necessary to gain mechanistic insights
into folding dynamics [21, 22]. Indeed, it can be difficult,
or sometimes even misleading, to draw conclusions about the
folding mechanics from the success of a simple model that
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does not take excluded-volume effects into account, as was
discovered recently in a critical assessment of the ‘topomer
search model’ for protein folding [23]. The attractiveness of an
all-atom explicit-chain approach to protein folding is obvious,
in that it can, at least in principle, provide an atomic-level
description of the folding mechanics of a polypeptide chain
from its unfolded state, through the transition state, and to
the native structure. The disadvantage is that it is notoriously
difficult to simulate folding on the computer. This difficulty
notwithstanding, remarkable progress has been made the last
10 years or so, which we will discuss in some detail below.

2. Molecular dynamics physics-based protein models

The moderate stability of proteins are maintained by several
different types of weak noncovalent interactions (one exception
is the disulfide bond that can occur between pairs of cystein
residues), such as van der Waals interactions, electrostatic
interactions, desolvation effects, hydrogen bonding, and the
hydrophobic effect. Because the origin of these different
energetic effects are well understood in principle, a relatively
straightforward approach to studying protein dynamics is
to describe all (or most) contributing molecular forces
based on a (classical) microscopic physical description with
the model parameters obtained from detailed calculations
(quantum mechanics). This is the general approach taken
by popular standard force fields such as CHARMM and
AMBER. Although simulations of protein dynamics using
such explicit-water force fields can provide a measure of
physical insight, their usefulness for protein folding is often
limited by the computational demands and the uncertainty as
to how accurately these empirical potentials can reproduce
protein energetics. For these reasons, solvent molecules are
often represented implicitly; for a review on recent advances
in implicit solvent models, see [24]. It should be pointed out,
however, that attempts at ab initio protein folding in explicit-
water are being made by massive computational efforts. For
example, Pande and co-workers recently obtained a large
number of relatively short explicit solvent MD trajectories
comprising a total of ≈500 μs simulation time for a double
mutant of the helical protein Villin [12], which illustrates the
current state-of-the-art in explicit-water simulation of protein
folding. Despite the unprecedented computational effort,
however, trajectories started from random coil structures very
rarely reached the fully folded state. Recent explicit solvent
simulations by Schulten and co-workers reached timescales
of up to 10 ms—more than the folding time of the WW
domain which they simulated [25]. The conformations reached
were nevertheless dissimilar to the native conformation and
the authors argued that the likely reason for that is in the
inaccuracy of the CHARM22 force field used [25]. These
results illustrate that computational resources are not the only
hurdle to solving the protein folding problem and that even the
detailed standard explicit-water force fields may need to be
further developed in order to be widely applicable to folding
studies.

3. Toward simple realistic all-atom models for
protein folding

An alternative approach for capturing the different types of
interactions governing protein dynamics (including solvent
effects) in a combined way is by using the vast amount of
information available in the many experimentally determined
native structures of proteins. This is the central idea behind
knowledge-based, or statistical, potentials. More precisely, the
aim is to extract information about putative interaction energies
between different residues from the pairing frequencies in
known protein structures. Miyazawa and Jernigan [26]
derived residue–residue energies using the quasichemical
approximation which assumes that the probability of contact
frequencies obey a Boltzmann distribution (the applicability
of Boltzmann distribution to frequencies of contact pairs in
proteins has been critically evaluated in [27]). The resulting
so-called Miyazawa–Jernigan interaction potential matrix has
been used in numerous applications, often together with simple
lattice models for protein folding. The quasichemical approach
has also been generalized to other types of more detailed
interactions, including contact energies between individual
atom groups [28], local chain propensities [29, 30], and
hydrogen bonding [31, 32].

In our lab, we took a different approach and devel-
oped [33] an all-atom knowledge-based potential that does not
rely on the quasichemical approximation. Instead, for two
atom types A and B, the contact energy takes the form

EAB = −μNAB + (1 − μ)ÑAB

μNAB + (1 − μ)ÑAB

,

where NAB(ÑAB) is the number of instances where atom types
A and B are found in contact (not found in contact) in the
protein structure data set. The weighted average form of this
‘μ-potential’ was chosen such that EAB coincides with the Go-
potential when trained on a single protein structure and the
number of atom types becomes the number of atoms in the
protein. The μ-potential procedure ensures that all interaction
energies EAB lie between −1 and +1, which is an advantage
over the quasichemical potential form which can overestimate
the repulsion between atom types that are not observed to
interact in the database. The parameter μ controls the overall
tendency to obtain attractive or repulsive interaction energies.
We have found that a suitable choice of μ is usually obtained by
requiring that the average contact energy, taken over all-atom
types, is zero, based on extensive test simulations performed
on real protein sequences.

4. All-atom ab initio folding of diverse proteins

A prerequisite for studying the folding process at atomic detail
is a model where dominant low-energy states resemble real
native protein structures. To this end, we recently developed an
all-atom model based on the μ-potential and applied it to a set
of amino acid sequences corresponding to proteins with diverse
secondary and tertiary structures [34]. The energy function
U of this model is relatively simple with only three terms,
U = Econ + a E trp + bEhb, corresponding to a μ-potential
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contact term (Econ), a term that models sequence-based local
conformational preferences (Etrp), and a term for hydrogen
bonding which can be modulated using secondary structure
prediction data (Ehb). Only three adjustable parameters exist
in the model, a and b which determine the relative weights
of the energy terms and a parameter β which controls the
hydrogen-bonding strength in β-sheet conformations. These
three parameters were adjusted based on the ability of the
model to fold a training set of 10 proteins and were then
held fixed for a test on a larger set of 13 proteins. Despite
the simple form of the energy function, the energy-minimum
structures obtained through replica-exchange Monte Carlo
(REMC) simulations displayed strong similarities with the
experimental structures, as is shown in figure 1. To ensure
an effective conformational search for the minimum-energy
state, the Monte Carlo procedure used in this study included
a knowledge-based move set [35]. The main reason for
including this move set was to enhance the sampling of relevant
regions in the conformational space (e.g., α-helix and β-sheet
regions) but it also meant that the results were not directly
amenable to a physical interpretation of the folding trajectories.
This sampling issue can be addressed by using a different
choice of move set and, moreover, through the use of fixed
temperature Monte Carlo simulations rather than REMC, the
trajectories obtained could be used to study the actual folding
dynamics. However, the goal here was mainly to study the
structural characteristics of the low-energy states for a set of
widely different sequences. An important implication of these
results is that a knowledge-based transferable potential with
a relatively simple form is sufficient to fold a diverse set of
small proteins (based on the energy-minimum criterion) to at
least moderate resolution, and in some cases high resolution.
This also further emphasizes the importance of particular
factors in the basic physics of folding, as well as for the
prediction of the structure of small compact proteins, such
as chain compaction resulting from hydrophobic residues,
local sequence-dependent conformational preferences, and
hydrogen bonding specific to α- and β-conformations.

5. Detailed analysis of kinetic folding trajectories:
clustering and structural graphs

With models for protein folding becoming more and more
accurate in describing the native states of proteins as low-
energy conformations, the ability to obtain large numbers of
folding trajectories for particular proteins is also starting to
become a reality. This situation then presents an interesting
question: how can data from folding simulations be analyzed
and organized into a coherent description of the folding
process? It is true that not all aspects of folding kinetics
require elaborate analysis methods. Relaxation behavior, chain
collapse, formation of secondary structure, etc, can often be
trivially obtained from an ensemble of folding trajectories.
In fact, these relatively simple types of measurements can
yield valuable insights into folding dynamics and are often
useful for making direct comparisons with experimental data.
However, from computer simulations of folding it is possible
to obtain much more detailed kinetic information about the

Figure 1. Comparison of the native structures of 4 proteins and the
corresponding minimum energy (Emin) conformations obtained from
REMC simulations of a simple transferable all-atom protein
model [34]. RMSD values indicate the structural differences between
native and Emin structures. The proteins are (A) IGG binding domain
of protein G, (B) apo calbindin D9K, (C) albumin binding domain of
protein G, and (D) a de novo designed protein model of a radical
enzyme. Reprinted from [34]. Copyright 2007, with permission from
Elsevier.

folding process, such as alternative folding ‘pathways’ or
the structural characteristics of metastable states. After
all, obtaining such kinetic information at an atomic-level
resolution is one of the main goals of simulation studies. The
use of graphs, network, and other clustering techniques to
analyze folding trajectories has a relatively long history. The
first to develop such a method was Levitt who introduced a
pairwise distance matrix (the distances can for example be
the Cα root-mean-square deviations (RMSDs) between the
generated conformations) [36] and a procedure for projecting
this high-dimensional matrix onto a two-dimensional plane
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such that the residual square error is minimized. Li and Daggett
used this method for analyzing the unfolding of Chymotrypsin
inhibitor 2 [37]. In particular, these authors attempted to locate
the TSE by finding the first occurrence of the rapid structural
changes which are expected to follow the passage across the
transition state and into the unfolded ensemble. This turned out
to be a challenging task as unfolding trajectories are usually
recorded in MD simulations at very high temperatures and
only gradual changes are discernible from such trajectories.
Brooks and co-workers introduced a method for clustering
conformations within trajectories based on a non-hierarchical
clustering scheme and applied it to a short peptide [38].
Another approach to analyze large numbers of trajectories
is to create a Markov state model (MSM) [39–42] which
attempts to find transition probabilities (computed from the
simulations) between states defined as conformational clusters.
This approach holds the promise of being able to describe the
transition between states through simple matrix multiplication
operations, which makes it ideal for use in conjunction with
large-scale distributed computing experiments which normally
provide huge numbers of short trajectories. However, research
into the accuracy of MSMs in describing the actual underlying
dynamics is still ongoing [43].

In analyzing the simulated kinetics of a 20 amino acid
three-stranded β-sheet peptide, beta3s, Rao and Caflisch
developed a method for constructing a ‘protein folding
network’ of kinetically linked conformations [44]. In this
approach, an initial coarse-graining of the conformational
space was performed such that each node in the graph
represented a set of conformations with an identical secondary
structure assignment. Undirected links were then placed
between nodes based on the observation of actual transitions in
single trajectories. The network resulting from their analysis
of beta3s is presented in figure 2, where the native basin of
attraction (FS) is shown at the bottom. Two parallel folding
pathways are seen as two dense areas of transitions (links)
with two different transition states, TSE1 and TSE2. By
inspection of the transition-state structures, Rao and Caflisch
could determine that the two pathways correspond to an initial
formation of the C- and N-terminal hairpin of the three-
stranded β-sheet peptide, respectively. Individual members
of TSE1 and TSE2 were determined through pfold analysis
(pfold analysis will be discussed in more detail below). Putative
TS conformations were identified by selecting nodes with two
properties which can be expected to characterize transition-
state structures: (1) a high connectivity-to-statistical weight
ratio and (2) a low clustering coefficient. An interesting
finding by Rao and Caflisch is that calculated pfold-values
tended to be strongly correlated with the average neighbor
connectivity, which suggests that an intelligent selection of
putative TS structures can be made by considering properties
of the network itself. Additional studies to elucidate this issue
would be interesting because it might provide a means to speed
up the identification of the TSE through pfold analysis, which
is computationally a quite demanding exercise.

A weakness in the protein network analysis of Rao and
Caflisch is that the direction of time in the population of
the various clusters cannot be clearly deduced. An approach

Figure 2. Protein folding network illustrating the conformational
space and folding of the three-stranded peptide beta3s [44]. Nodes
are clusters of identical secondary structure assignments and their
sizes reflect their statistical weights (i.e. their free energies), and the
node colors indicate average neighbor connectivities. Yellow
diamonds are TS conformations identified through pfold analysis.
Two distinct transition-state regions, TSE1 and TSE2, emerge from
the analysis. Reprinted from [44]. Copyright 2004, with permission
from Elsevier.

that fully addresses this issue is the structural cluster analysis
framework introduced recently by our group [45]. The
aim this analysis is (1) to detect various trends among the
many microscopic pathways taken in a large set of folding
trajectories, and (2) to characterize these trends from both
structural and kinetic perspectives. The fundamental idea
behind the cluster analysis framework is the concept of
a ‘structural graph’, which is schematically illustrated in
figure 3. All conformations of the three fictitious trajectories in
figure 3 are clustered together based on their pairwise structural
similarities, creating various clusters with structurally coherent
conformations. These clusters are informative by themselves
as they demonstrate which structural motifs are common
during folding but do not otherwise provide any kinetic
information. We therefore introduced a quantity F , the flux
of a cluster, which is defined as the fraction of all trajectories
passing through the cluster, thus quantifying the cluster’s
kinetic significance. The native state, which can be identified
as the giant component of the graph (GC, the largest cluster),
will have F = 1 because all trajectories eventually reach N. In
figure 3, this is the rightmost cluster. If other clusters with F =
1 are found, they can be interpreted as obligatory intermediate
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Figure 3. A schematic view explaining the concept of a structural
graph and the flux, F . Each node (colored ovals) represents a single
conformation and edges (solid lines) are drawn between structurally
similar conformations (as determined by a criterion d < dc, where d
is a structural distance measure and dc a selected cutoff value).
Different colors indicate conformations from different trajectories
and wavy lines indicate the direction of time, t . A collection of nodes
that are linked by edges (either directly or in several steps) belong to
the same cluster, and hence share strong structural similarities.
Figure reprinted with permission from [45]. Copyright 2006 by the
National Academy of Sciences.

states [45]. We have used this theoretical framework to analyze
the folding process of several small helical proteins [45–47].
In particular, it was successfully used to study, in full atomic
detail, the folding of the Engrailed Homeodomain, where
several important states on the main pathway for folding,
including collapsed partial helical states and an intermediate
state, could be identified [45] (see figure 4). In this analysis,
different structural similarity measures were used to create
structural graphs, which was important as each measure could
provide different structural insights into the folding process.

6. Three-helix-bundle folding kinetics: universality
and diversity

As discussed above, one of the main goals of all-atom
simulation of protein folding is to provide a description
of the folding process at microscopic detail. This goal is
closest to being met for small three-helix-bundle proteins [48],
which are among the simplest protein folds that contain both
secondary and tertiary structure. Folding simulations of this
fold are simplified by the fact that α-helices are local structural
elements and, as such, less complicated to model than β-sheets,
which may involve chain segments that are globally separated
in sequence. A few key questions about the folding of three-
helix-bundle proteins are being addressed both through in
vitro experiments and theory (of course, similar questions are
being asked about protein folding in general). For example,
what are the main ‘pathways’ for folding? This question
entails determining the order in which key events occur during

the folding process, such as chain collapse, helix formation,
formation of intermediates, etc. Another important question
is: what are the structural characteristics of the transition-state
ensemble? Also, determining to what extent there is a universal
mechanism by which folding occurs for three-helix-bundle
proteins is of course a crucial question. Two small three-
helix-bundle proteins which have played a particularly central
role in addressing these different issues are the B domain of
protein A and the Villin headpiece. Computational studies
have been performed using various approaches with a range
of modeling complexities, from simple Cα Go-type to all-atom
explicit-water modeling, for both protein A [33, 46, 49–62] and
Villin [56, 57, 63–67].

One specific detail, relating to the folding pathways
of three-helix-bundle proteins, which has been discussed
somewhat extensively in many investigations is the order of
formation of individual α-helices during the folding of protein
A. Bai et al [68] performed circular dichroism measurements
on individual fragments of protein A and found that the C-
terminal α-helix (helix 3) is the only one of the helices with
some stability on its own. Consistent with this observation,
many atomic-level simulations [53, 54, 56, 57, 60, 62] of
protein A, as well as our recent study [47], have predicted
that helix 3 is the most stable and the first to form during
folding. This view was challenged, however, by a recent
comprehensive φ-value analysis performed on protein A by
Fersht et al [69, 70], which suggested that the TSE consists
of a nearly fully formed helix 2, stabilized by hydrophobic
interactions from helix 1, while helix 3 is mostly unstructured.
As pointed out by Fersht et al [70], this picture of folding
is consistent overall with the results obtained by an all-atom
simulation study by Cheng et al [51]. Despite this, however,
the transition-state ensemble obtained by Cheng et al did
not lead to φ values that matched experimental values in a
quantitative way. By contrast, such an agreement was achieved
in our simulations of protein A [47] (see figure 5), despite the
early formation of helix 3. Our simulation results suggested
a folding scenario where helix 3 forms early in the folding
process but otherwise interacts only weakly with the ‘nucleus’
of the transition state consisting of a relatively well-formed
helical hairpin formed by helix 1 and 2. This proposed folding
scenario is compelling partly because it may reconcile the
apparent discrepancy between the φ-value analysis [69, 70] and
circular dichroism measurements [68] on protein A.

The Villin headpiece is one of the fastest folding proteins
discovered to date, which makes this protein an ideal candidate
for testing the accuracy of molecular dynamics simulations.

Figure 4. Folding from a denatured (D) state, which rapidly undergoes nonspecific collapse (C). There are several C states, characterized by
increasing compaction and helical content. After the protein becomes sufficiently helical, the chain extends through fluctuations to an
expanded intermediate (I) state, which allows rearrangement of the helices, and is followed by the transition state (TS). A final collapse to a
near native (NN) state ensues, which proceeds through specific side chain packing and energetic relaxation to the native (N) state. C1, C2, C3,
and I, may undergo rapid conversion.
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Figure 5. Comparison between simulated and experimental φ-values
for the B domain of protein A and the φ-value prediction made for
the Villin headpiece. Computational φ values are derived from a
construction of the TSE of the two protein using a clustering
procedure and pfold analysis. Figure reprinted with permission
from [47]. Copyright 2008 by the National Academy of Sciences.

Pande et al [67] used distributed computing to achieve
thousands of trajectories of Villin with an implicit-water all-
atom model. The length of each individual trajectory was very
short (≈50 ns) compared to the overall folding time of Villin.
These simulations are therefore mainly a characterization
of the unfolded state under folding conditions and longer
individual trajectories would be desirable. However, because
of the large total simulation time (≈300 μs), a fraction of
the trajectories are still expected to contain folding events
which can then be further analyzed. In fact, this fraction
allowed Pande et al to estimate of the folding rate of Villin
to 5(+11,−3) μs. To experimentally test this prediction,
Kubelka et al [71] used a laser-induced temperature jump to
probe the kinetic behavior of a N27H mutant of Villin on the
sub-microsecond timescale. The histidine mutation (H) was
introduced to enhance the fluorescence signal of a solvent-
exposed tryptophan residue which was used as a probe for
folding. The folding time was measured to 4.3(±0.6) μs, in
remarkably good agreement with the simulation results. This
agreement does not guarantee, however, that the actual folding

dynamics in the simulations is correct. In a further analysis
of their trajectories, Pande et al observed an average rapid
collapse of the chain with radius of gyration and native solvent
accessibility close to that of the native state within 20 ns of
simulation. In particular, this collapse meant that a natively
solvent-exposed phenylalanine residue at position 36 (F36)
was involved in a misfolded trapped state mediated by three
other phenylalanines in the Villin sequence, which hampered
the formation of the native structure. Hence, it was suggested
that removing F36 would speed up folding. In response to
this observation, Kubelka et al investigated the kinetics of the
double mutant N27H/F36A but found no significant effect on
the folding rate, suggesting that the misfolded trap observed
in the simulations of Pande et al is not highly populated in
reality or disassociates quickly enough to have little effect on
the overall kinetics. One of the reasons for such discrepancies
may be that folding events observed in very short individual
trajectories represent anomalies not indicative of actual folding
pathways. Paci and coauthors compared the folding of a
relatively small beta-peptide observed in long trajectories with
that of rare fast-folding events observed in short trajectories
in distributed computing [72]. They showed that rare fast-
folding events observed in distributed computing simulations
are indeed atypical of a normal folding scenario [72]. Given the
very small size of the proteins studied (in the range of 20–35
amino acid residues) and some arbitrariness in the definition of
the folded state observed in the simulations a possibility exists
that distributing computing generates many rapidly collapsed
conformations and a few of them, by sheer chance, resemble
the native state to a certain extent. A possible control for
that would be a demonstration that the observed folding
events are indeed sequence dependent (random collapse events
apparently can occur with any sequence). However, to the best
of our knowledge, such a control has not been carried out in
distributed computing simulations.

In a recent effort to speed up the folding of Villin even
further, Kubelka et al constructed another double mutant of
Villin, where two buried lysine residues were substituted by
norleucine residues, which was found to fold in the sub-
microsecond folding range, making it an ultrafast folding
protein [10]. This experimental advance, in combination
with an unprecedented recent computational effort using
distributed computing, allowed Pande et al to close the gap
between explicit-water molecular dynamics simulation and
experiment [12]. The authors obtained ≈500 independent
simulation trajectories of each ≈1 μs initiated from 9
different conformations with varying degrees of residual native
structure. Because of the extremely fast-folding nature of this
Villin double mutant, each trajectory should be expected to
contain on average at least one folding event in contrast to
their earlier study [67]. Although foldings were observed for
3 of the initial conformations, which had the most structural
similarity with the native conformations, very few of the
simulations which started from >7 Å Cα RMSD away from
the native structure resulted in folding. It should be pointed out
though that a quite strict criterion was used to identify folded
conformations. Nonetheless, these results clearly indicate that
even current explicit-water force fields may require additional
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parameter tuning to accurately capture the complete folding
dynamics of small proteins. Some folding trajectories were
observed in [12], however, which were further analyzed. The
relaxation behavior was found to be well described by a
double-exponential function, both for an observable meant to
mimic a tryptophan fluorescence signal and the native state
population. Interestingly, this result is similar to what we
observed for the Villin protein, suggesting that implicit solvent
all-atom models may produce results similar to more elaborate
explicit-water models.

Our recent study of protein A and Villin along with a
previous investigation of the Engrailed Homeodomain [73]
provide a comprehensive analysis of folding processes
for three-helix-bundle proteins, within an implicit solvent
approximation. In combining these results, we were able to
formulate a universal picture of the folding of three-helix-
bundle proteins [47]. This picture contains both universal
features as well as significant diversity in the details. We
find that the first step in folding is an initial collapse of the
chain accompanied by partial formation of the α-helices (to
a greater or lesser extent). On average, the chain thereafter
remains relatively compact but frequent visits to more extended
structures occur. During such fluctuations, the TSE may be
located after which the chain collapses to the native state. The
TSE consists of relatively well-formed helices organized into
a two-helix hairpin and a third helix which is well formed but
partially detached. Within this general framework there may be
significant differences in the details, however. For example, the
initial collapse phase can be accompanied by the formation of a
single helix (such as helix 3 for protein A) or two helices (helix
2 and helix 3 for Villin). Moreover, there are two possibilities
for the helical hairpin in the TSE, either involving helix 1 and
2 such as in protein A and Villin or helix 2 and 3 in Engrailed
Homeodomain. Our analysis thus suggests that formation of
a helix-turn-helix motif prior to entering the TSE might be a
universal mechanism observed in folding of three-helix-bundle
proteins, although details of which hairpin is formed may vary.

Many aspects of three-helix-bundle formation are clearly
becoming known based on a combination of theoretical and
experimental results. Still, some questions remain to be
fully addressed. An issue that has only recently gained
considerable attention is the character of the unfolded, or
denatured, state ensemble. For a long time, the denatured
state was generally thought of as an ensemble of unstructured,
random coil conformations. This view is changing, however.
With improvements in NMR spectroscopy and small-angle x-
ray scattering in particular, the existence of secondary and
sometimes even tertiary structure elements have been found in
the denatured states of some proteins as well as in intrinsically
disordered proteins [74]. The denatured states of protein A
and Villin have so far been the focus of two computational
studies [75, 76]. Another intriguing issue pertaining to the
folding of three-helix-bundle proteins in general that has yet to
be fully addressed is how nature selects the folding into one
of the two possible mirror-image related three-helix-bundle
topologies [77, 78], especially considering the very similar
native contact pattern produced by the two topologies [79].

7. Folding thermodynamics: insights from peptide
folding

In addition to kinetic data on proteins, equilibrium thermo-
dynamic measurements on protein systems provide a way to
test the physical accuracy of all-atom protein models. A com-
plete thermodynamic characterization of protein folding is es-
pecially challenging to obtain computationally because it re-
quires a representative sampling of the entire conformational
space. Small peptide systems therefore provide a unique test-
ing ground for comparing different protein models from a ther-
modynamic perspective, as well as an opportunity to gain in-
sight into early events in the protein folding process [80]. In
fact peptide folding includes many of the features observed in
full-size protein folding, such as secondary structure forma-
tion, desolvation, ion pair formation, etc. Several peptides with
around 20 amino acids or less have been discovered which fold
into unique native states and are thus ideal test systems for pro-
tein models.

An illustrative example of the strength and limitations of
current standard molecular dynamics simulations is given by
the study of Garcı́a and Sanbonmatsu [81] where the folding
of the Fs peptide, a designed single-helix alanine/arginine
21 amino acid sequence, was studied with a replica-exchange
molecular dynamics procedure and a modified version of the
standard AMBER force field. Their simulations discovered
an interesting detail in the peptide folding mechanism of
the Fs peptide: the guanidinium group in the arginine
sidechains may interact favorably with the carbonyl group
four residues upstream in the chain and desolvate backbone
hydrogen bonds, effectively increasing their strength and thus
the overall stability of the α-helix. Despite such a detailed
insight into the folding mechanism, a poor overall agreement
with experimental thermodynamic data on the Fs peptide was
obtained. A complete melting of the helix occurred only at
temperatures T ≈ 500 K. Similarly a weak T -dependence is in
fact often observed in current molecular dynamics force fields
and it has therefore been suggested that a reparametrization of
these types of model might be needed [82]. It is interesting
to compare these results with the thermodynamic behavior
obtained by a minimalistic all-atom model developed by
Irbäck and co-workers [83–85], with a force field based on
effective hydrophobic forces and hydrogen bonding. Irbäck
and Mohanty recently applied this model to a set of 5 peptides
with diverse secondary structure contents, including the Fs

peptide, and achieved accurate thermodynamic behavior, with
melting temperatures in good quantitative agreement with
experimental data, for all 5 peptides [83].

8. The transition-state ensemble in microscopic detail

A crucial part of achieving a complete ensemble view of any
protein folding process is the characterization of the transition
states that must be crossed during folding. Many small (and
occasionally large [86]) single-domain proteins fold in an
apparent two-state manner [87], i.e. with a single transition
state. This means that folding proceeds more or less directly
from the unfolded ensemble, U, to the native state, N, without
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significantly populating any intermediate state, at least not to
an extent detectable by current experimental probes. A free-
energy barrier separating the U and N states arises as the result
of an imperfect cancelation between entropic and energetic
contributions to folding, and the peak of this free-energy
barrier is the transition state. The ensemble of conformations
that make up the transition state is naturally of great importance
in protein folding and a significant effort has been undertaken
to try to characterize this state from different perspectives.

Because of its inherent unstable nature, the transition
state is virtually impossible to study experimentally by direct
means. However, ingenious indirect ways of probing the
character of the transition state have been developed through
protein engineering methods. One of these is φ-value analysis,
pioneered by Fersht and co-workers [88], in which the effect
of point mutations on the height of the free-energy barrier
with respect to the unfolded and folded states, respectively,
are probed (by measuring rate constants for folding and
unfolding). The result of the analysis for an amino acid
position i is encoded in a φ value, defined as φi =
(��GTS−U/��GN−U), where ��GTS−U is the change in the
free-energy difference between the TSE and U and ��GN−U

is the change in free-energy difference between the native
state and U, resulting from the same mutation. A structural
interpretation of φ values is straightforward for two ideal
situations: φi = 0 means that the residue i is as disordered
in the TS as in U, and φi = 1 means that i is as ordered
in TS as in N. Intermediate φ values, which are normally
obtained, are much more difficult to interpret, however. They
indicate either that residue i is immersed in an environment
that is partly native-like or that the obtained φ value is an
ensemble average over multiple transition states resulting from
parallel pathways for folding. Unconventional φ values (>1 or
negative) sometimes also occur and are often taken as signs
of nonnative interactions in the transition state. Moreover,
the use of φ values derived from mutations with a small
effect on protein stability (��GN−U < 1.7 kcal mol−1)
is controversial [89, 90]. Despite these caveats φ-value
analysis remains the most common experimental method for
investigating the structural characteristics of the TSE for
single-domain proteins.

Computer simulations present a unique opportunity to
interpret φ values in structural ensemble terms at atomic
resolution. Several groups have made attempts at combining
protein engineering data and computer models to better
understand the precise meaning of φ values and learn
more about the TSE of particular proteins [91–94]. One
approach aimed towards obtaining a detailed structural
characterization of the TS was suggested by Vendruscolo
and co-workers [93, 95], who introduced a pseudo-energy
term involving a bias toward conformations which conform to
experimentally determined φ values and applied their method
to the 98-amino acid protein acylphosphatase. Conceptually,
their procedure is similar to that used to generate native state
structures compatible with NOE data from NMR experiments.
Through these simulations, the authors were able to identify
three residues (tyrosine 11, proline 54, and phenylalanine
94) in acylphosphatase which play key roles in organizing

the polypeptide chain into its transition state—confirming the
folding mechanism of nucleation via formation of a specific
nucleus as was previously discovered in our lab [96, 97].
One potential weakness in the approach taken by Vendruscolo
and co-workers is that computational φ values are interpreted
in simple structural terms. The computational equivalent of
φ values were calculated as the fraction of native contacts
formed in the TSE relative to N, i.e. φ

comp
i = 〈nTSE

i 〉/nNAT
i

where 〈nTSE
i 〉 is the average number of native contacts in

the TSE for a residue i and nNAT
i is the number of native

contacts. This definition has become the de facto standard in
the computational protein folding literature but it is nonetheless
an unverified assumption. In the absence of more exact
ways to compute the free-energy contributions ��GTS−U and
��GN−U which make up the φ value quantity, ensembles
obtained from φ value-restrained ensemble simulations should
therefore be seen as putative TSEs rather than actual TSEs.

A way to construct a ‘true’ TSE is to verify whether
generated conformations actually belong to the TSE. A
rigorous such test is supplied by pfold analysis which rests
on the following simple observation about conformations C
belonging to the TSE: independent trajectories passing through
C will have an equal probability of first reaching the native
state as the unfolded state, i.e. it will have a transmission
coefficient, pfold, of 0.5 [98]. This property can be viewed
as a kinetic definition: conformations belonging to the TSE
‘sit’ at the top of the free-energy barrier (in fact at the saddle
point region in the multidimensional conformational space
separating the folded and unfolded basins of attraction). The
quantity pfold can be obtained by initiating a large number
of folding simulations, with random initial conditions, from
C and determining how many of the trajectories reach N
without previously reaching U. Practically, however, a more
convenient way to calculate pfold is to determine the fraction
of the trajectories that have ‘committed’ to folding after some
time τcommit [99]. An important question here is, of course, if
the pfold criterion should be imposed on a carefully constructed
putative TSE? In studying the structural details of TSE for
protein G using an all-atom Go-type model, Hubner et al [99]
first generated φ value-restrained conformations, following the
method of Vendruscolo et al [95], and then further tested the
obtained structures through pfold analysis. The study yielded
some important observations. It was found that a gradual
addition of φ values as restraints meant that the average pfold

value over all conformations in the putative TSE first grows
and then saturates at ≈0.5. The putative TSE is therefore
a reasonable approximation to the true TSE on average.
However, the distribution of individual pfold values was found
to be distinctly bimodal, with most values close to either 0
or 1. This result is perhaps not surprising given that the
transition state is an inherently unstable state and even small
‘perturbations’ away from the free-energy barrier may easily
lead to conformations that are committed either to folding or
unfolding. The bimodal distribution of pfold values clearly
indicates that no simple structural proxy exists that can detect
true TS conformations with high accuracy.

However, some limitations to pfold analysis method exist.
Determining the pfold for a single conformation requires many
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independent auxiliary simulations, making pfold calculations
computationally very demanding. It has also been pointed out
that because force fields are not perfect, the estimation of pfold

values are susceptible to errors. Less-than-perfect correlations
between pfold values were indeed found when calculated using
a range of different force fields [100]. Hence, there are
significant technical challenges with pfold analysis. However,
it is also clear that unverified putative TSEs can sometime
be misleading about the characteristics of the transition state.
An illustration of this is provided by the SH3 domain, where
a highly native-like topology of the TSE was obtained from
(unverified) φ values constraints simulations [101, 102], while
further pfold analyses of the same protein domain have revealed
a much richer picture of the TSE, with a highly polarized
small nucleus but with significant parts of the chain left
unstructured [91, 103].

9. Conclusion

Advances made over the last decade in protein modeling, along
with increased computational resources and technologies,
have made the folding of protein chains on the computer
possible in certain cases. This has allowed an ensemble
picture of the folding process to be constructed for small
proteins, in particular three-helix-bundle proteins, through the
generation of large numbers of complete folding trajectories
at atomic detail. It is encouraging to see that many of
these advances have been achieved with relatively simple
models which combine relatively simple statistical potentials
and all-atom representation of the protein chain. This further
emphasizes the role of a few key physical aspects of the
forces that drive folding, such as hydrogen bonding and the
hydrophobic effect. Still, it is clear that further development
and refinement of the existing models is needed, as well
as comparative studies of different modeling approaches.
In working toward elucidating the mechanics of folding,
the importance of combining experimental and theoretical
approaches cannot be overstated. Experimental data play
key roles in verifying protein models, but true synergy
between theory and experiments is also being obtained.
For example, protein engineering experiments are combined
with explicit-chain simulations thus achieving atomistically
detailed constructions of transition-state ensembles for folding.
Computer simulation folding, with its ability to provide
microscopic insights, is being used to explain or even reconcile
kinetic experimental data on folding which may, at first,
appear contradictory. It is widely believed that an eventual
solution to the protein folding problem will take a combined
effort between simulation and experiment. Given the rapid
development in both areas, fundamental additional progress
in our understanding of the kinetics and thermodynamics of
protein folding is bound to follow in the near future.
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[52] Favrin G, Irbäck A and Wallin S 2002 Proteins: Struct. Funct.

Genet. 47 99
[53] Garcı́a A E and Onuchic J N 2003 Proc. Natl Acad. Sci. USA

100 13898
[54] Ghosh A, Elber R and Scheraga H A 2002 Proc. Natl Acad.

Sci. USA 99 10394
[55] Guo Z, Brooks C L III and Boczko E M 1997 Proc. Natl

Acad. Sci. USA 94 10161
[56] Jang S, Kin E, Shin S and Pak Y 2003 J. Am. Chem. Soc.

125 14841
[57] Kim S-Y, Lee J and Lee J 2004 J. Chem. Phys. 120 8271
[58] Linhananta A and Zhou Y 2002 J. Chem. Phys. 117 8983
[59] Liwo A, Khalili M and Scheraga H A 2005 Proc. Natl Acad.

Sci. USA 102 2362
[60] St-Pierre J-F, Mousseau N and Derreumaux P 2008 J. Chem.

Phys. 128 045101
[61] Zhou Y and Karplus M 1999 Nature 401 400
[62] Alonso D O V and Daggett V 2000 Proc. Natl Acad. Sci. USA

97 133
[63] De Mori G M, Colombo G and Micheletti C 2005 Proteins

58 459
[64] Duan Y and Kollman P A 1998 Science 282 740
[65] Fernandez A, Shen M Y, Colubri A, Sosnick T R,

Berry R S and Freed K F 2003 Biochemistry 42 664
[66] Herges T and Wenzel W 2005 Structure 13 661
[67] Zagrovic B, Snow C D, Shirts M R and Pande V S 2002

J. Mol. Biol. 323 927
[68] Bai Y, Karimi A, Dyson J and Wright P E 1997 Protein Sci.

6 1449
[69] Sato S, Religa T L, Daggett V and Fersht A R 2004 Proc. Natl

Acad. Sci. USA 101 6952
[70] Sato S, Religa T L and Fersht A R 2006 J. Mol. Biol. 360 850
[71] Kubelka J, Eaton W A and Hofrichter J 2003 J. Mol. Biol.

329 625
[72] Paci E, Cavalli A, Vendruscolo M and Caflisch A 2003 Proc.

Natl Acad. Sci. USA 100 8217
[73] Hubner I A, Deeds E J and Shakhnovich E I 2006 Proc. Natl

Acad. Sci. USA 103 17747

[74] Mittag T and Forman-Kay J D 2007 Curr. Opin. Struct. Biol.
17 3

[75] Chowdhury S, Lei H and Duan Y 2005 J. Phys. Chem. B
109 9073

[76] Jayachandran G, Vishal V, Garcı́a A E and Pande V S 2007
J. Struct. Biol. 157 491

[77] Irbäck A, Sjunnesson F and Wallin S 2000 Proc. Natl Acad.
Sci. USA 97 13614

[78] Regan L and Degrado W F 1988 Science 241 976
[79] Wallin S, Farwer J and Bastolla U 2002 Proteins: Struct.

Funct. Genet. 50 144
[80] Gnanakaran S, Nymeyer H, Portman J, Sanbonmatsu K Y and

Garcı́a A E 2003 Curr. Opin. Struct. Biol. 13 168
[81] Garcı́a A E and Sanbonmatsu K Y 2002 Proc. Natl Acad. Sci.

USA 99 2782
[82] Zhou R, Berne B J and Germain R S 2001 Proc. Natl Acad.

Sci. USA 98 14931
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